N 05 Commutants of Bol Loops of Odd Order

نویسندگان

  • MICHAEL K. KINYON
  • J. D. PHILLIPS
چکیده

In this note we show that the commutant of a Bol loop of odd order is a subloop.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BOL LOOPS AND BRUCK LOOPS OF ORDER pq

Right Bol loops are loops satisfying the identity ((zx)y)x = z((xy)x), and right Bruck loops are right Bol loops satisfying the identity (xy)−1 = x−1y−1. Let p and q be odd primes such that p > q. Advancing the research program of Niederreiter and Robinson from 1981, we classify right Bol loops of order pq. When q does not divide p−1, the only right Bol loop of order pq is the cyclic group of o...

متن کامل

When Is the Commutant of a Bol Loop a Subloop?

A left Bol loop is a loop satisfying x(y(xz)) = (x(yx))z. The commutant of a loop is the set of all elements which commute with all elements of the loop. In a finite Bol loop of odd order or of order 2k, k odd, the commutant is a subloop. We investigate conditions under which the commutant of a Bol loop is not a subloop. In a finite Bol loop of order relatively prime to 3, the commutant generat...

متن کامل

A ug 2 00 9 Commuting graphs of odd prime order elements in simple groups ∗

We study the commuting graph on elements of odd prime order in finite simple groups. The results are used in a forthcoming paper describing the structure of Bruck loops and Bol loops of exponent 2.

متن کامل

- theorems , and loop structure

We discuss central automorphisms of partial linear spaces, particularly those with three points per line. When these automorphisms have order two and their products are restricted to have odd order, we are in the situation of Glauberman's Z∗-theorem. This sheds light on the structure of various coordinatizing loops, particularly Bol and Moufang loops.

متن کامل

1 4 N ov 2 00 4 Collineation groups of the smallest Bol 3 - nets ∗ Gábor

Some associativity properties of a loop can be interpreted as certain closure configuration of the corresponding 3-net. It was known that the smallest non-associative loops with the so called left Bol property have order 8. In this paper, we determine the direction preserving collineation groups of the 3-nets belonging to these smallest Bol loops. For that, we prove some new results concerning ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002